Copied to
clipboard

G = C62.19D6order 432 = 24·33

2nd non-split extension by C62 of D6 acting via D6/C2=S3

metabelian, supersoluble, monomial

Aliases: C62.19D6, C3⋊Dic3⋊C12, He36(C4⋊C4), (C6×C12).1S3, (C6×C12).1C6, C6.15(S3×C12), C32⋊C123C4, C6.Dic6⋊C3, C62.5(C2×C6), (C2×He3).4Q8, C6.5(C3×Dic6), (C3×C6).5Dic6, (C2×He3).26D4, C2.1(He36D4), C2.1(He33Q8), C325(Dic3⋊C4), (C22×He3).17C22, C323(C3×C4⋊C4), (C2×C4×He3).1C2, (C3×C6).2(C3×Q8), (C2×C12).5(C3×S3), (C2×C6).39(S3×C6), (C3×C6).3(C2×C12), (C3×C6).15(C4×S3), (C3×C6).11(C3×D4), C6.14(C3×C3⋊D4), C2.4(C4×C32⋊C6), (C2×C3⋊Dic3).1C6, C3.2(C3×Dic3⋊C4), (C3×C6).19(C3⋊D4), (C2×C32⋊C12).6C2, (C2×C4).1(C32⋊C6), (C2×He3).19(C2×C4), C22.4(C2×C32⋊C6), SmallGroup(432,139)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.19D6
C1C3C32C3×C6C62C22×He3C2×C32⋊C12 — C62.19D6
C32C3×C6 — C62.19D6
C1C22C2×C4

Generators and relations for C62.19D6
 G = < a,b,c,d | a6=b6=1, c6=d2=a3, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=b3c5 >

Subgroups: 397 in 107 conjugacy classes, 40 normal (36 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C2×C4, C32, C32, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, He3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C62, Dic3⋊C4, C3×C4⋊C4, C2×He3, C6×Dic3, C2×C3⋊Dic3, C6×C12, C6×C12, C32⋊C12, C32⋊C12, C4×He3, C22×He3, C3×Dic3⋊C4, C6.Dic6, C2×C32⋊C12, C2×C4×He3, C62.19D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C12, D6, C2×C6, C4⋊C4, C3×S3, Dic6, C4×S3, C3⋊D4, C2×C12, C3×D4, C3×Q8, S3×C6, Dic3⋊C4, C3×C4⋊C4, C32⋊C6, C3×Dic6, S3×C12, C3×C3⋊D4, C2×C32⋊C6, C3×Dic3⋊C4, He33Q8, C4×C32⋊C6, He36D4, C62.19D6

Smallest permutation representation of C62.19D6
On 144 points
Generators in S144
(1 61 84 3 67 78)(2 70 81 4 64 75)(5 69 76 7 63 82)(6 66 73 8 72 79)(9 71 74 11 65 80)(10 68 83 12 62 77)(13 89 49 15 95 55)(14 86 58 16 92 52)(17 138 121 19 144 127)(18 135 130 20 141 124)(21 105 120 23 99 114)(22 102 117 24 108 111)(25 136 123 27 142 129)(26 133 132 28 139 126)(29 85 53 31 91 59)(30 94 50 32 88 56)(33 137 128 35 143 122)(34 134 125 36 140 131)(37 107 118 39 101 112)(38 104 115 40 98 109)(41 90 54 43 96 60)(42 87 51 44 93 57)(45 97 116 47 103 110)(46 106 113 48 100 119)
(1 47 5 23 11 37)(2 48 6 24 12 38)(3 45 7 21 9 39)(4 46 8 22 10 40)(13 35 29 28 44 18)(14 36 30 25 41 19)(15 33 31 26 42 20)(16 34 32 27 43 17)(49 122 53 126 57 130)(50 123 54 127 58 131)(51 124 55 128 59 132)(52 125 56 129 60 121)(61 103 69 99 65 107)(62 104 70 100 66 108)(63 105 71 101 67 97)(64 106 72 102 68 98)(73 111 77 115 81 119)(74 112 78 116 82 120)(75 113 79 117 83 109)(76 114 80 118 84 110)(85 139 93 135 89 143)(86 140 94 136 90 144)(87 141 95 137 91 133)(88 142 96 138 92 134)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 32 3 30)(2 18 4 20)(5 16 7 14)(6 28 8 26)(9 41 11 43)(10 33 12 35)(13 40 15 38)(17 21 19 23)(22 31 24 29)(25 37 27 39)(34 45 36 47)(42 48 44 46)(49 117 55 111)(50 80 56 74)(51 115 57 109)(52 78 58 84)(53 113 59 119)(54 76 60 82)(61 96 67 90)(62 139 68 133)(63 94 69 88)(64 137 70 143)(65 92 71 86)(66 135 72 141)(73 122 79 128)(75 132 81 126)(77 130 83 124)(85 98 91 104)(87 108 93 102)(89 106 95 100)(97 136 103 142)(99 134 105 140)(101 144 107 138)(110 121 116 127)(112 131 118 125)(114 129 120 123)

G:=sub<Sym(144)| (1,61,84,3,67,78)(2,70,81,4,64,75)(5,69,76,7,63,82)(6,66,73,8,72,79)(9,71,74,11,65,80)(10,68,83,12,62,77)(13,89,49,15,95,55)(14,86,58,16,92,52)(17,138,121,19,144,127)(18,135,130,20,141,124)(21,105,120,23,99,114)(22,102,117,24,108,111)(25,136,123,27,142,129)(26,133,132,28,139,126)(29,85,53,31,91,59)(30,94,50,32,88,56)(33,137,128,35,143,122)(34,134,125,36,140,131)(37,107,118,39,101,112)(38,104,115,40,98,109)(41,90,54,43,96,60)(42,87,51,44,93,57)(45,97,116,47,103,110)(46,106,113,48,100,119), (1,47,5,23,11,37)(2,48,6,24,12,38)(3,45,7,21,9,39)(4,46,8,22,10,40)(13,35,29,28,44,18)(14,36,30,25,41,19)(15,33,31,26,42,20)(16,34,32,27,43,17)(49,122,53,126,57,130)(50,123,54,127,58,131)(51,124,55,128,59,132)(52,125,56,129,60,121)(61,103,69,99,65,107)(62,104,70,100,66,108)(63,105,71,101,67,97)(64,106,72,102,68,98)(73,111,77,115,81,119)(74,112,78,116,82,120)(75,113,79,117,83,109)(76,114,80,118,84,110)(85,139,93,135,89,143)(86,140,94,136,90,144)(87,141,95,137,91,133)(88,142,96,138,92,134), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,32,3,30)(2,18,4,20)(5,16,7,14)(6,28,8,26)(9,41,11,43)(10,33,12,35)(13,40,15,38)(17,21,19,23)(22,31,24,29)(25,37,27,39)(34,45,36,47)(42,48,44,46)(49,117,55,111)(50,80,56,74)(51,115,57,109)(52,78,58,84)(53,113,59,119)(54,76,60,82)(61,96,67,90)(62,139,68,133)(63,94,69,88)(64,137,70,143)(65,92,71,86)(66,135,72,141)(73,122,79,128)(75,132,81,126)(77,130,83,124)(85,98,91,104)(87,108,93,102)(89,106,95,100)(97,136,103,142)(99,134,105,140)(101,144,107,138)(110,121,116,127)(112,131,118,125)(114,129,120,123)>;

G:=Group( (1,61,84,3,67,78)(2,70,81,4,64,75)(5,69,76,7,63,82)(6,66,73,8,72,79)(9,71,74,11,65,80)(10,68,83,12,62,77)(13,89,49,15,95,55)(14,86,58,16,92,52)(17,138,121,19,144,127)(18,135,130,20,141,124)(21,105,120,23,99,114)(22,102,117,24,108,111)(25,136,123,27,142,129)(26,133,132,28,139,126)(29,85,53,31,91,59)(30,94,50,32,88,56)(33,137,128,35,143,122)(34,134,125,36,140,131)(37,107,118,39,101,112)(38,104,115,40,98,109)(41,90,54,43,96,60)(42,87,51,44,93,57)(45,97,116,47,103,110)(46,106,113,48,100,119), (1,47,5,23,11,37)(2,48,6,24,12,38)(3,45,7,21,9,39)(4,46,8,22,10,40)(13,35,29,28,44,18)(14,36,30,25,41,19)(15,33,31,26,42,20)(16,34,32,27,43,17)(49,122,53,126,57,130)(50,123,54,127,58,131)(51,124,55,128,59,132)(52,125,56,129,60,121)(61,103,69,99,65,107)(62,104,70,100,66,108)(63,105,71,101,67,97)(64,106,72,102,68,98)(73,111,77,115,81,119)(74,112,78,116,82,120)(75,113,79,117,83,109)(76,114,80,118,84,110)(85,139,93,135,89,143)(86,140,94,136,90,144)(87,141,95,137,91,133)(88,142,96,138,92,134), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,32,3,30)(2,18,4,20)(5,16,7,14)(6,28,8,26)(9,41,11,43)(10,33,12,35)(13,40,15,38)(17,21,19,23)(22,31,24,29)(25,37,27,39)(34,45,36,47)(42,48,44,46)(49,117,55,111)(50,80,56,74)(51,115,57,109)(52,78,58,84)(53,113,59,119)(54,76,60,82)(61,96,67,90)(62,139,68,133)(63,94,69,88)(64,137,70,143)(65,92,71,86)(66,135,72,141)(73,122,79,128)(75,132,81,126)(77,130,83,124)(85,98,91,104)(87,108,93,102)(89,106,95,100)(97,136,103,142)(99,134,105,140)(101,144,107,138)(110,121,116,127)(112,131,118,125)(114,129,120,123) );

G=PermutationGroup([[(1,61,84,3,67,78),(2,70,81,4,64,75),(5,69,76,7,63,82),(6,66,73,8,72,79),(9,71,74,11,65,80),(10,68,83,12,62,77),(13,89,49,15,95,55),(14,86,58,16,92,52),(17,138,121,19,144,127),(18,135,130,20,141,124),(21,105,120,23,99,114),(22,102,117,24,108,111),(25,136,123,27,142,129),(26,133,132,28,139,126),(29,85,53,31,91,59),(30,94,50,32,88,56),(33,137,128,35,143,122),(34,134,125,36,140,131),(37,107,118,39,101,112),(38,104,115,40,98,109),(41,90,54,43,96,60),(42,87,51,44,93,57),(45,97,116,47,103,110),(46,106,113,48,100,119)], [(1,47,5,23,11,37),(2,48,6,24,12,38),(3,45,7,21,9,39),(4,46,8,22,10,40),(13,35,29,28,44,18),(14,36,30,25,41,19),(15,33,31,26,42,20),(16,34,32,27,43,17),(49,122,53,126,57,130),(50,123,54,127,58,131),(51,124,55,128,59,132),(52,125,56,129,60,121),(61,103,69,99,65,107),(62,104,70,100,66,108),(63,105,71,101,67,97),(64,106,72,102,68,98),(73,111,77,115,81,119),(74,112,78,116,82,120),(75,113,79,117,83,109),(76,114,80,118,84,110),(85,139,93,135,89,143),(86,140,94,136,90,144),(87,141,95,137,91,133),(88,142,96,138,92,134)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,32,3,30),(2,18,4,20),(5,16,7,14),(6,28,8,26),(9,41,11,43),(10,33,12,35),(13,40,15,38),(17,21,19,23),(22,31,24,29),(25,37,27,39),(34,45,36,47),(42,48,44,46),(49,117,55,111),(50,80,56,74),(51,115,57,109),(52,78,58,84),(53,113,59,119),(54,76,60,82),(61,96,67,90),(62,139,68,133),(63,94,69,88),(64,137,70,143),(65,92,71,86),(66,135,72,141),(73,122,79,128),(75,132,81,126),(77,130,83,124),(85,98,91,104),(87,108,93,102),(89,106,95,100),(97,136,103,142),(99,134,105,140),(101,144,107,138),(110,121,116,127),(112,131,118,125),(114,129,120,123)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F4A4B4C4D4E4F6A6B6C6D···6I6J···6R12A12B12C12D12E···12T12U···12AB
order12223333334444446666···66···61212121212···1212···12
size111123366622181818182223···36···622226···618···18

62 irreducible representations

dim111111112222222222222266666
type+++++-+-++-
imageC1C2C2C3C4C6C6C12S3D4Q8D6C3×S3Dic6C4×S3C3⋊D4C3×D4C3×Q8S3×C6C3×Dic6S3×C12C3×C3⋊D4C32⋊C6C2×C32⋊C6He33Q8C4×C32⋊C6He36D4
kernelC62.19D6C2×C32⋊C12C2×C4×He3C6.Dic6C32⋊C12C2×C3⋊Dic3C6×C12C3⋊Dic3C6×C12C2×He3C2×He3C62C2×C12C3×C6C3×C6C3×C6C3×C6C3×C6C2×C6C6C6C6C2×C4C22C2C2C2
# reps121244281111222222244411222

Matrix representation of C62.19D6 in GL10(𝔽13)

4000000000
0400000000
0010000000
0001000000
0000001000
0000100000
0000010000
000022212122
0000000100
0000000001
,
12000000000
01200000000
00120000000
00012000000
0000900000
0000090000
0000009000
0000800300
0000080030
0000111111003
,
71000000000
31000000000
0042000000
00112000000
0000100000
0000090000
0000003000
0000000100
0000080030
00008429109
,
21100000000
91100000000
00107000000
00103000000
0000600200
0000050060
00001010128810
0000200700
0000090080
0000970141

G:=sub<GL(10,GF(13))| [4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,2,0,1],[12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,9,0,0,8,0,11,0,0,0,0,0,9,0,0,8,11,0,0,0,0,0,0,9,0,0,11,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3],[7,3,0,0,0,0,0,0,0,0,10,10,0,0,0,0,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,8,0,0,0,0,0,9,0,0,8,4,0,0,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,1,0,9,0,0,0,0,0,0,0,0,3,10,0,0,0,0,0,0,0,0,0,9],[2,9,0,0,0,0,0,0,0,0,11,11,0,0,0,0,0,0,0,0,0,0,10,10,0,0,0,0,0,0,0,0,7,3,0,0,0,0,0,0,0,0,0,0,6,0,10,2,0,9,0,0,0,0,0,5,10,0,9,7,0,0,0,0,0,0,12,0,0,0,0,0,0,0,2,0,8,7,0,1,0,0,0,0,0,6,8,0,8,4,0,0,0,0,0,0,10,0,0,1] >;

C62.19D6 in GAP, Magma, Sage, TeX

C_6^2._{19}D_6
% in TeX

G:=Group("C6^2.19D6");
// GroupNames label

G:=SmallGroup(432,139);
// by ID

G=gap.SmallGroup(432,139);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,365,92,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=a^3,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽